A framework for clustering massive graph streams
نویسندگان
چکیده
منابع مشابه
A framework for clustering massive graph streams
In this paper, we examine the problem of clustering massive graph streams. Graph clustering poses significant challenges because of the complex structures which may be present in the underlying data. The massive size of the underlying graph makes explicit structural enumeration very difficult. Consequently, most techniques for clustering multidimensional data are difficult to generalize to the ...
متن کاملA Framework for Clustering Massive Text and Categorical Data Streams
Many applications such as news group filtering, text crawling, and document organization require real time clustering and segmentation of text data records. The categorical data stream clustering problem also has a number of applications to the problems of customer segmentation and real time trend analysis. We will present an online approach for clustering massive text and categorical data stre...
متن کاملOn Clustering Graph Streams
In this paper, we will examine the problem of clustering massive graph streams. Graph clustering poses significant challenges because of the complex structures which may be present in the underlying data. The massive size of the underlying graph makes explicit structural enumeration very difficult. Consequently, most techniques for clustering multi-dimensional data are difficult to generalize t...
متن کاملA Framework for Clustering Evolving Data Streams
The clustering problem is a difficult problem for the data stream domain. This is because the large volumes of data arriving in a stream renders most traditional algorithms too inefficient. In recent years, a few one-pass clustering algorithms have been developed for the data stream problem. Although such methods address the scalability issues of the clustering problem, they are generally blind...
متن کاملA Parameterized Framework for Clustering Streams
Clustering of data streams finds important applications in tracking evolution of various phenomena in medical, meteorological, astrophysical, seismic studies. Algorithms designed for this purpose are capable of adapting the discovered clustering model to the changes in data characteristics but are not capable of adapting to the user’s requirements themselves. Based on the previous observation, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Analysis and Data Mining: The ASA Data Science Journal
سال: 2010
ISSN: 1932-1864
DOI: 10.1002/sam.10090